Instructor: Prof. Thomas H"oft
Office: OSS 204
Phone: 651–962–5535
email: hoft@stthomas.edu
webpage: http://personal.stthomas.edu/hoft9833
Office Hours: 12:15pm–2:00pm MW, or by appointment.

Course website: http://blackboard.stthomas.edu
Prerequisites: Math 114, Calculus II (C-).
Meeting times & location: Section 01: MWF 8:15am–9:20am OWS 257; Section 02: MWF 9:35am–10:40am OWS 257.
Credit Hours: 4.

Objectives:
• Gain factual knowledge in differential equations: basic terminology and types of ODEs.
• Learn fundamental principles and theories: algebraic and numerical solution methods, existence, general solutions.

Note: Read! You will get much more out of the course if you read the section before the lecture. We won’t be able to cover every last detail in class so if you don’t find it in your notes, look for it in the book.

Workload: You are expected to work at least 3 hours outside of the classroom for every hour in class (i.e. 12+ hrs/wk).

Homework: Mathematics, like other skills, is learned by doing. Note: Late homework is not accepted.

Quizzes: There will be almost-daily 5-minute quizzes. Some problems will be taken directly from the homework assignments. Make-up quizzes will not be given. Contact me in advance for absence due to UST sponsored programs. To accommodate for extenuating circumstances, I will drop the four lowest quiz scores.

Exams: The two midterm exams will be on WEDNESDAY 1 MARCH and WEDNESDAY 12 APRIL during the regular meeting time. The final exam will be 8:00AM–10:00AM TUESDAY 16 MAY FOR SECTION 01 and 8:00AM–10:00AM WEDNESDAY 17 MAY FOR SECTION 02. Contact me immediately regarding conflicts with these exams.

Missing a quiz/exam: Don’t, if you can at all help it! If your ability to take an examination is in doubt for any reason, please consult me as early as possible. Contact me in advance for absence due to UST sponsored programs or as soon as reasonable in case of emergencies. Make-up exams and quizzes are not given. For excused absences an alternative grade computation will be used; for unexcused absences the exam score will be zero.

Attendance: I will conduct this course on the assumption that you attend class. If you do not, it is your responsibility to make up anything you may have missed. Confer with your classmates regarding announcements, lecture notes, and any other activities and information from class. I will not repeat lecture for you one-on-one.

Classroom Conduct: Be respectful of everyone in the room. Any activity of yours which could distract or disrupt the ability of those around you to focus and learn should be reserved for before/after class. In particular, shut off and put away your cell phone, laptop, music player, Turing machine, rotary phone, or abacus.

Cheating: Don’t!

Disability Statement: Qualified students with documented disabilities who may need classroom accommodations should make an appointment with the Disability Resources office. Appointments can be made by calling 651–962–6315. You may also make an appointment in person in Murray Herrick, room 110. For further information, you can locate the Disability Resources office on the web at http://www.stthomas.edu/enhancementprog/.

Grades: Your course score is computed as
• Homework: 15%
• Quizzes: 15%
• Mid-term Exams (2): 40%
• Final Exam: 30%

The course average is converted into a letter grade using the usual convention that 90+ is an A, 80–89 is a B, etc. There are no opportunities for extra credit.

How to Succeed in this course:
• Do ALL homework promptly! Falling behind is extremely detrimental.
• Use the book. Read the section with a paper and pencil. Work the examples and fill in the skipped steps.
• Take neat and careful notes in class. Review and revise them after each class period.
• Ask questions in class if you do not understand what is being discussed or do not understand the homework.
• Work with other people. I encourage you to form study groups and learn from each other.
• Don’t wait to get help! Seek out classmates or contact me – sooner rather than later.
<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Section</th>
<th>Topic</th>
<th>Homework</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/30</td>
<td>1.1</td>
<td>Intro, Modeling via DEs</td>
<td>p. 14 # 3, 5, 13, 15, 17</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2/1</td>
<td>1.2</td>
<td>Separation of variables</td>
<td>p. 35 # 1, 3, 5, 7, 9, 15, 17, 23, 35</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2/3</td>
<td>1.3</td>
<td>Slope fields</td>
<td>p. 47 # 1, 3, 5, 7, 11, 13, 15, 16, 17</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2/6</td>
<td>1.4</td>
<td>Euler’s method</td>
<td>p. 61 # 1, 3, 5, 6, 11, 15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2/8</td>
<td>1.5</td>
<td>Existence & uniqueness</td>
<td>p. 71 # 1, 3, 5, 7, 9, 11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2/10</td>
<td>1.6</td>
<td>Equilibria & phase lines</td>
<td>p. 89 # 1, 3, 5, 9, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2/13</td>
<td>1.7</td>
<td>Bifurcations</td>
<td>p. 106 # 1, 3, 9, 11, 13, 19, 23</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2/15</td>
<td>1.8</td>
<td>Linear equations (undet. coef.)</td>
<td>p. 121 # 1, 3, 5, 7, 9, 13, 17, 20, 23</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2/17</td>
<td>1.9</td>
<td>Linear equations (int. fact.)</td>
<td>p. 133 # 1, 5, 11, 21, 23; p. 141 # 54</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2/20</td>
<td>2.1</td>
<td>Modeling via systems</td>
<td>p. 161 # 1, 2, 3, 4, 7, 9</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2/22</td>
<td>2.2</td>
<td>Direction fields & solution curves</td>
<td>p. 178 # 1, 3, 9, 11, 13, 15, 17, 21, 23, 25, 27</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2/24</td>
<td>2.3, 2.4</td>
<td>Damped harm. osc. & special sys.</td>
<td>p. 187 # 1, 3, 5; p. 194 # 1, 3, 5, 7, 11</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>2/27</td>
<td></td>
<td>Review</td>
<td>p. 136 # 1, 3, 5, 9, 10, 11, 13, 17, 21, 23, 27, 33, 35, 37, 41, 47, 49, 51; p. 224 # 1–17 odd, 23–28</td>
<td></td>
</tr>
<tr>
<td>X1</td>
<td>3/1</td>
<td>3/3</td>
<td>App. C</td>
<td>Complex arithmetic</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3/6</td>
<td>3.1</td>
<td>Properties of linear systems</td>
<td>p. 258 # 5, 9, 17, 25, 27, 29</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3/8</td>
<td>3.2</td>
<td>Straight-line solns, e–vectors/values</td>
<td>p. 277 # 1–9 odd, parts a–c, 15–18</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3/10</td>
<td>3.2</td>
<td>Straight-line solns, e–vectors/values</td>
<td>p. 277 # 1–9 odd, 11, 13, 21, 23</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3/13</td>
<td>3.3</td>
<td>Phase portraits, real eigenvalues</td>
<td>p. 293 # 1, 3, 5, 7, 9, 11, 15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3/15</td>
<td>3.4</td>
<td>Complex eigenvalues</td>
<td>p. 310 # 1–15 odd</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3/17</td>
<td>3.5</td>
<td>Repeated & zero eigenvalues</td>
<td>p. 327 # 1–7 odd, 11, 17, 21, 23</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>4/10</td>
<td></td>
<td>Review</td>
<td>p. 376 # 1, 3, 5, 7, 11, 15, 17, 19, 21, 27, 29, 31; p. 449 # 1, 2, 4, 5, 6, 8, 11, 14, 15, 17, 23, 25</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>4/12</td>
<td></td>
<td>Exam 2</td>
<td>p. 376 # 1, 3, 5, 7, 11, 15, 17, 19, 21, 27, 29, 31; p. 449 # 1, 2, 4, 5, 6, 8, 11, 14, 15, 17, 23, 25</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3/27</td>
<td>3.7</td>
<td>Trace-determinant plane</td>
<td>p. 358 # 2, 3, 5, 9, 11, 14</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3/29</td>
<td>3.6</td>
<td>Second-order linear ODEs</td>
<td>p. 342 # 1, 3, 7, 9, 31</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3/31</td>
<td>3.6</td>
<td>Harmonic oscillator</td>
<td>p. 342 # 13, 15, 16, 17, 21, 23, 36</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4/3</td>
<td>4.1</td>
<td>Forced harmonic oscillators</td>
<td>p. 399 # 1, 7, 11, 13, 21, 25, 31, 39</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4/5</td>
<td>4.2</td>
<td>Sinusoidal forcing</td>
<td>p. 412 # 1, 5, 9, 11, 13, 15, 17, 19</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4/7</td>
<td>4.3</td>
<td>Undamped forcing and resonance</td>
<td>p. 424 # 1, 5, 9, 13, 16, 21, 22, 24</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>4/10</td>
<td></td>
<td>Review</td>
<td>p. 376 # 1, 3, 5, 7, 11, 15, 17, 19, 21, 27, 29, 31; p. 449 # 1, 2, 4, 5, 6, 8, 11, 14, 15, 17, 23, 25</td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td>4/12</td>
<td></td>
<td>Exam 2</td>
<td>p. 376 # 1, 3, 5, 7, 11, 15, 17, 19, 21, 27, 29, 31; p. 449 # 1, 2, 4, 5, 6, 8, 11, 14, 15, 17, 23, 25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4/19</td>
<td>5.1</td>
<td>Easter Monday</td>
<td>p. 472 # 3, 6, 7, 9, 11, 17, 23, 25, 27</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4/21</td>
<td>5.1</td>
<td>Equilibria, linearization, & stability</td>
<td>p. 472 # 3, 6, 7, 9, 11, 17, 23, 25, 27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4/24</td>
<td>5.2</td>
<td>Qualitative analysis</td>
<td>p. 487 # 5, 7, 13</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>4/26</td>
<td>5.2</td>
<td>Qualitative analysis</td>
<td>p. 487 # 1, 3, 9, 11, 17, 19, 21</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4/28</td>
<td>5.3</td>
<td>Hamiltonian systems</td>
<td>p. 503 # 1, 3, 11, 13, 14, 15, 18</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>5/1</td>
<td>6.1</td>
<td>Laplace transform</td>
<td>p. 577 # 1, 3, 7, 9, 11, 13, 15, 17, 25</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>5/3</td>
<td>6.2</td>
<td>Discontinuous functions</td>
<td>p. 585 # 1–9 odd, 13</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>5/5</td>
<td>6.3</td>
<td>Second-order equations</td>
<td>p. 599 # 1, 11, 13, 15, 17, 27, 29, 31, 33</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>5/8</td>
<td>6.4</td>
<td>Impulse forcing</td>
<td>p. 608 # 1, 3, 5, 6, 7, 9</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>5/10</td>
<td>6.5</td>
<td>Convolution</td>
<td>p. 616 # 7, 10</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>5/12</td>
<td></td>
<td>Review</td>
<td>p. 608 # 1, 3, 5, 6, 7, 9</td>
<td></td>
</tr>
<tr>
<td>XF</td>
<td>5/16</td>
<td>8:00am</td>
<td>Final Exam – Section 01</td>
<td>Final Exam – Section 01</td>
<td></td>
</tr>
<tr>
<td>XF</td>
<td>5/17</td>
<td>8:00am</td>
<td>Final Exam – Section 02</td>
<td>Final Exam – Section 02</td>
<td></td>
</tr>
</tbody>
</table>