Discrete Haar Wavelet Transforms

Patrick J. Van Fleet

Center for Applied Mathematics
University of St. Thomas
St. Paul, MN USA

PREP - Wavelet Workshop, 2006
Outline

Today’s Schedule

Building the Haar Matrix
 Putting Two Filters Together
 Why the Word Wavelet?
 Examples

Coding the Haar Transform
 Implementing W_N
 Implementing W^T_N

2D Haar Transform
 Building the 2D Transform
 Coding the 2D Transform

Iterating

In the Classroom
 Teaching Ideas
 Computer Usage
Today’s Schedule

9:00-10:15 **Lecture One**: Why Wavelets?
10:15-10:30 **Coffee Break** (OSS 235)
10:30-11:45 **Lecture Two**: Digital Images, Measures, and Huffman Codes
12:00-1:00 Lunch (Cafeteria)
1:30-2:45 **Lecture Three**: Fourier Series, Convolution and Filters
2:45-3:00 **Coffee Break** (OSS 235)
3:00-4:15 ⇒**Lecture Four**: 1D and 2D Haar Transforms
5:30-6:30 Dinner (Cafeteria)
Building the Haar Matrix
Putting Two Filters Together

- Consider again the filter \(h = (h_0, h_1) = \left(\frac{1}{2}, \frac{1}{2} \right) \).
- If we compute \(y = h \ast x \), we obtain the components
 \[
 y_n = \frac{1}{2} x_n + \frac{1}{2} x_{n-1}
 \]
- We could write down the convolution matrix
Building the Haar Matrix

Putting Two Filters Together

Consider again the filter \(h = (h_0, h_1) = (\frac{1}{2}, \frac{1}{2}) \).

If we compute \(y = h \ast x \), we obtain the components

\[
y_n = \frac{1}{2}x_n + \frac{1}{2}x_{n-1}
\]

We could write down the convolution matrix.
Consider again the filter \(h = (h_0, h_1) = \left(\frac{1}{2}, \frac{1}{2} \right) \).

If we compute \(y = h \ast x \), we obtain the components

\[
y_n = \frac{1}{2} x_n + \frac{1}{2} x_{n-1}
\]

We could write down the convolution matrix.
Building the Haar Matrix

Putting Two Filters Together

Consider again the filter \(h = (h_0, h_1) = (\frac{1}{2}, \frac{1}{2}) \).

If we compute \(y = h \ast x \), we obtain the components

\[
y_n = \frac{1}{2}x_n + \frac{1}{2}x_{n-1}
\]

We could write down the convolution matrix
Building the Haar Matrix

Putting Two Filters Together

\[H = \begin{bmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & 0 & 0 & 0 & 0 \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 \frac{1}{2} \frac{1}{2} \\ \vdots & 0 & 0 & 0 & 0 \frac{1}{2} \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{bmatrix} \]
But we can’t invert the process.

What would we need to be able to invert the process?

We have averages of consecutive numbers - if we had the directed distance between these averages and the consecutive numbers, then we could invert.

The directed distance is exactly the sequence x convolved with the filter $g = \left(\frac{1}{2}, -\frac{1}{2} \right)$.
Building the Haar Matrix

Putting Two Filters Together

- ... but we can’t invert the process.
- What would we need to be able to invert the process?
- We have averages of consecutive numbers - if we had the directed distance between these averages and the consecutive numbers, then we could invert.
- The directed distance is exactly the sequence x convolved with the filter $g = \left(\frac{1}{2}, -\frac{1}{2} \right)$.

Wednesday, 7 June, 2006

Discrete Haar Wavelet Transforms
... but we can’t invert the process.

What would we need to be able to invert the process?

We have averages of consecutive numbers - if we had the directed distance between these averages and the consecutive numbers, then we could invert.

The directed distance is exactly the sequence x convolved with the filter $g = (\frac{1}{2}, -\frac{1}{2})$.

Wednesday, 7 June, 2006

Lecture 4

Discrete Haar Wavelet Transforms
Building the Haar Matrix

Putting Two Filters Together

…but we can’t invert the process.

What would we need to be able to invert the process?

We have averages of consecutive numbers - if we had the directed distance between these averages and the consecutive numbers, then we could invert.

The directed distance is exactly the sequence x convolved with the filter $g = (\frac{1}{2}, -\frac{1}{2})$.
Building the Haar Matrix

Putting Two Filters Together

- ... but we can’t invert the process.
- What would we need to be able to invert the process?
- We have averages of consecutive numbers - if we had the directed distance between these averages and the consecutive numbers, then we could invert.
- The directed distance is exactly the sequence x convolved with the filter $g = (\frac{1}{2}, -\frac{1}{2})$.
Building the Haar Matrix

Indeed if

\[y_n = \frac{1}{2}x_n + \frac{1}{2}x_{n-1} \quad \text{and} \quad z_n = \frac{1}{2}x_n - \frac{1}{2}x_{n-1} \]

then

\[x_n = y_n + z_n \quad \text{and} \quad x_{n-1} = y_n - z_n \]
Building the Haar Matrix

Putting Two Filters Together

Perhaps we could invert the process if we used both filters. We know that G is
Building the Haar Matrix

Putting Two Filters Together

\[G = \ldots \begin{bmatrix} \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \ldots & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & \ldots \\ \ldots & \ldots \end{bmatrix} \]
Building the Haar Matrix

Putting Two Filters Together

So that

\[
\begin{bmatrix}
H \\
G
\end{bmatrix}
\cdot
\begin{bmatrix}
x
\end{bmatrix}
=
\begin{bmatrix}
y \\
z
\end{bmatrix}
\]
Building the Haar Matrix

Putting Two Filters Together

If we think about inverting, we can write down:
Putting Two Filters Together

Building the Haar Matrix

\[
\begin{align*}
 y_1 - z_1 &= \frac{x_1 + x_0}{2} - \frac{x_1 - x_0}{2} = x_0 \\
 y_1 + z_1 &= \frac{x_1 + x_0}{2} + \frac{x_1 - x_0}{2} = x_1 \\
 y_2 - z_2 &= \frac{x_2 + x_1}{2} - \frac{x_2 - x_1}{2} = x_1 \\
 y_2 + z_2 &= \frac{x_2 + x_1}{2} + \frac{x_2 - x_1}{2} = x_2 \\
 y_3 - z_3 &= \frac{x_3 + x_2}{2} - \frac{x_3 - x_2}{2} = x_2 \\
 y_3 + z_3 &= \frac{x_3 + x_2}{2} + \frac{x_3 - x_2}{2} = x_3 \\
 \vdots & \hspace{1cm} \vdots
\end{align*}
\]
Building the Haar Matrix

Putting Two Filters Together

But there is some redundancy here - we do not need all the values of y_n, z_n to recover x_n:
Putting Two Filters Together

Building the Haar Matrix

Putting Two Filters Together

\[y_1 - z_1 = \frac{x_1 + x_0}{2} - \frac{x_1 - x_0}{2} = x_0 \]

\[y_1 + z_1 = \frac{x_1 + x_0}{2} + \frac{x_1 - x_0}{2} = x_1 \]

\[y_2 - z_2 = \frac{x_2 + x_1}{2} - \frac{x_2 - x_1}{2} = x_1 \]

\[y_2 + z_2 = \frac{x_2 + x_1}{2} + \frac{x_2 - x_1}{2} = x_2 \]

\[y_3 - z_3 = \frac{x_3 + x_2}{2} - \frac{x_3 - x_2}{2} = x_2 \]

\[y_3 + z_3 = \frac{x_3 + x_2}{2} + \frac{x_3 - x_2}{2} = x_3 \]

\[\vdots \]

\[\vdots \]
Putting Two Filters Together

Building the Haar Matrix

Putting Two Filters Together

- So we can omit every other row in H, G and still produce enough to be able to recover x
- This is called *downsampling*.
- We are also now in a position to truncate our matrix. Indeed, if $x = (x_0, \ldots, x_N)$, then it is natural to truncate the matrix and write:
Building the Haar Matrix

Putting Two Filters Together

- So we can omit every other row in H, G and still produce enough to be able to recover x
- This is called *downsampling*.
- We are also now in a position to truncate our matrix. Indeed, if $x = (x_0, \ldots, x_N)$, then it is natural to truncate the matrix and write:
Building the Haar Matrix

Putting Two Filters Together

So we can omit every other row in H, G and still produce enough to be able to recover x

This is called *downsampling*.

We are also now in a position to truncate our matrix.
Indeed, if $x = (x_0, \ldots, x_N)$, then it is natural to truncate the matrix and write:
Building the Haar Matrix

Putting Two Filters Together

▶ So we can omit every other row in H, G and still produce enough to be able to recover x

▶ This is called *downsampling*.

▶ We are also now in a position to *truncate* our matrix. Indeed, if $x = (x_0, \ldots, x_N)$, then it is natural to truncate the matrix and write:
Building the Haar Matrix

Putting Two Filters Together

\[
\tilde{W}_N = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & \frac{1}{2} & 1 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0
\end{bmatrix}
\]

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & \ldots & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & \frac{1}{2} \\
\end{array}
\]

\[
\begin{array}{cccccccc}
-\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0
\end{array}
\]

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & \ldots & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & \frac{1}{2} \\
\end{array}
\]
Building the Haar Matrix

Putting Two Filters Together

This matrix is easy to invert if we remember the formulas:

\[x_n = y_n + z_n \quad \text{and} \quad x_{n-1} = y_n - z_n \]

We have:
Putting Two Filters Together

Building the Haar Matrix

Putting Two Filters Together

\[
\tilde{W}_N^{-1} = \begin{bmatrix}
1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Building the Haar Matrix

Putting Two Filters Together

- Note we are very close to having \tilde{W}_N an orthogonal matrix.
- We have $\tilde{W}_N^T = \frac{1}{2} \tilde{W}_N^{-1}$.
- If we multiply \tilde{W}_N by $\sqrt{2}$, we will obtain an orthogonal matrix.
- We have:
Building the Haar Matrix

Putting Two Filters Together

▶ Note we are very close to having \tilde{W}_N an orthogonal matrix.
▶ We have $\tilde{W}_N^T = \frac{1}{2} \tilde{W}_N^{-1}$.
▶ If we multiply \tilde{W}_N by $\sqrt{2}$, we will obtain an orthogonal matrix.
▶ We have:
Note we are very close to having \tilde{W}_N an orthogonal matrix.

We have $\tilde{W}_N^T = \frac{1}{2} \tilde{W}_N^{-1}$.

If we multiply \tilde{W}_N by $\sqrt{2}$, we will obtain an orthogonal matrix.

We have:
Building the Haar Matrix

Putting Two Filters Together

Note we are very close to having \tilde{W}_N an orthogonal matrix.

We have $\tilde{W}_N^T = \frac{1}{2} \tilde{W}_N^{-1}$.

If we multiply \tilde{W}_N by $\sqrt{2}$, we will obtain an orthogonal matrix.

We have:
Today’s Schedule

Putting Two Filters Together

Building the Haar Matrix

Putting Two Filters Together

Note we are very close to having \tilde{W}_N an orthogonal matrix.

We have $\tilde{W}_N^T = \frac{1}{2} \tilde{W}_N^{-1}$.

If we multiply \tilde{W}_N by $\sqrt{2}$, we will obtain an orthogonal matrix.

We have:
Building the Haar Matrix

Putting Two Filters Together

\[W_N = \begin{bmatrix} H & G \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \]
Building the Haar Matrix

Putting Two Filters Together

- W_N is called the Discrete Haar Wavelet Transform.
- The filter $h = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right)$ is called the Haar filter.

Note that $H(\omega) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} e^{i\omega}$ satisfies $H(\pi) = 0, \text{ but } H(0) = \frac{\sqrt{2}}{2}$. We will still consider this to be a lowpass filter - the $\frac{\sqrt{2}}{2}$ resulted when we made the transform orthogonal.
Building the Haar Matrix

Putting Two Filters Together

- W_N is called the **Discrete Haar Wavelet Transform**

- The filter

 \[
 h = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right)
 \]

 is called the **Haar filter**.

- Note that $H(\omega) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} e^{i\omega}$ satisfies $H(\pi) = 0$, but $H(0) = \frac{\sqrt{2}}{2}$. We will still consider this to be a lowpass filter-the $\frac{\sqrt{2}}{2}$ resulted when we made the transform orthogonal.
Building the Haar Matrix
Putting Two Filters Together

- W_N is called the Discrete Haar Wavelet Transform
- The filter

$$h = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right)$$

is called the Haar filter.

- Note that $H(\omega) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \ e^{i\omega}$ satisfies $H(\pi) = 0$, but $H(0) = \frac{\sqrt{2}}{2}$. We will still consider this to be a lowpass filter-the $\frac{\sqrt{2}}{2}$ resulted when we made the transform orthogonal.
Building the Haar Matrix

Putting Two Filters Together

- W_N is called the Discrete Haar Wavelet Transform
- The filter
 \[h = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right) \]
 is called the Haar filter.
- Note that $H(\omega) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} e^{i\omega}$ satisfies $H(\pi) = 0$, but $H(0) = \frac{\sqrt{2}}{2}$. We will still consider this to be a lowpass filter-the $\frac{\sqrt{2}}{2}$ resulted when we made the transform orthogonal.
Building the Haar Matrix

Why the Word Wavelet?

- The word wavelet comes from the more classical treatment of the topic. Here, we work in $L^2(\mathbb{R})$ and downsampling is basically a way to move between nested subspaces V_j that are generated by the translates and dilates of a single scaling function.

- If V_0 is the space of piecewise constants with possible breaks at \mathbb{Z}, then the characteristic function $\phi(t) = \chi_{[0,1)}(t)$ and its translates form an orthonormal basis for V_0.

Wednesday, 7 June, 2006
Why the Word Wavelet?

Building the Haar Matrix

Why the Word Wavelet?

- The word wavelet comes from the more classical treatment of the topic. Here, we work in $L^2(\mathbb{R})$ and downsampling is basically a way to move between nested subspaces V_j that are generated by the translates and dilates of a single scaling function.

- If V_0 is the space of piecewise constants with possible breaks at \mathbb{Z}, then the characteristic function $\phi(t) = \chi_{[0,1)}(t)$ and its translates form an orthonormal basis for V_0.
The word wavelet comes from the more classical treatment of the topic. Here, we work in $L^2(\mathbb{R})$ and downsampling is basically a way to move between nested subspaces V_j that are generated by the translates and dilates of a single scaling function.

If V_0 is the space of piecewise constants with possible breaks at \mathbb{Z}, then the characteristic function $\phi(t) = \chi_{[0,1)}(t)$ and its translates form an orthonormal basis for V_0.
Building the Haar Matrix

Why the Word Wavelet?
Building the Haar Matrix

Why the Word Wavelet?

If V_1 is the space of piecewise constants with possible breakpoints at $\frac{1}{2}\mathbb{Z}$, then $V_0 \subset V_1$, and the functions $\sqrt{2}\phi(2t - k)$ form an orthonormal basis for V_1.
Building the Haar Matrix

Why the Word Wavelet?

Note that

\[\phi(t) = \sqrt{2} \left(\frac{\sqrt{2}}{2} \phi(2t) + \frac{\sqrt{2}}{2} \phi(2t - 1) \right) \]

is called a dilation equation.
Why the Word Wavelet?

Building the Haar Matrix

Why the Word Wavelet?

- We can get the Haar filter coefficients from the dilation equation.
- The word wavelet refers to the function $\psi(t)$ that generates a basis for the orthogonal complement of V_0 in V_1.
- In this case, the wavelet function is

$$
\psi(t) = \begin{cases}
1 & 0 \leq t < \frac{1}{2} \\
-1 & \frac{1}{2} \leq t < 1
\end{cases}
$$
Today’s Schedule

Building the Haar Matrix

Coding the Haar Transform

2D Haar Transform

Iterating

In the Classroom

Why the Word Wavelet?

Building the Haar Matrix

Why the Word Wavelet?

▶ We can get the Haar filter coefficients from the dilation equation.

▶ The word wavelet refers to the function \(\psi(t) \) that generates a basis for the orthogonal complement of \(V_0 \) in \(V_1 \).

▶ In this case, the wavelet function is

\[
\psi(t) = \begin{cases}
1 & 0 \leq t < \frac{1}{2} \\
-1 & \frac{1}{2} \leq t < 1
\end{cases}
\]
Building the Haar Matrix

We can get the Haar filter coefficients from the dilation equation.

The word wavelet refers to the function $\psi(t)$ that generates a basis for the orthogonal complement of V_0 in V_1.

In this case, the wavelet function is

$$\psi(t) = \begin{cases}
1 & 0 \leq t < \frac{1}{2} \\
-1 & \frac{1}{2} \leq t < 1
\end{cases}$$
Why the Word Wavelet?

Building the Haar Matrix

Why the Word Wavelet?

▶ We can get the Haar filter coefficients from the dilation equation.

▶ The word wavelet refers to the function $\psi(t)$ that generates a basis for the orthogonal complement of V_0 in V_1.

▶ In this case, the wavelet function is

$$
\psi(t) = \begin{cases}
1 & 0 \leq t < \frac{1}{2} \\
-1 & \frac{1}{2} \leq t < 1
\end{cases}
$$
Building the Haar Matrix

Why the Word Wavelet?

Note that $\psi(t) \in V_1$ and

$$\psi(t) = \phi(t) = \sqrt{2} \left(\frac{\sqrt{2}}{2} \phi(2t) - \frac{\sqrt{2}}{2} \phi(2t - 1) \right)$$

so that the highpass filter $g = \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right)$ can be read from this dilation equation.
Building the Haar Matrix
Why the Word Wavelet?

I opted to stay away from the classical approach to wavelets.

It is beautiful theory, but too much for sophomores and juniors.

I believe it’s better to give them a practical introduction to Fourier series and convolution, and then derive the discrete wavelet transform by using a lowpass/highpass filter pair and downsampling.
I opted to stay away from the classical approach to wavelets.

It is beautiful theory, but too much for sophomores and juniors.

I believe it’s better to give them a practical introduction to Fourier series and convolution, and then derive the discrete wavelet transform by using a lowpass/highpass filter pair and downsampling.
Why the Word Wavelet?

Building the Haar Matrix

Why the Word Wavelet?

- I opted to stay away from the classical approach to wavelets.
- It is beautiful theory, but too much for sophomores and juniors.
- I believe it’s better to give them a practical introduction to Fourier series and convolution, and then derive the discrete wavelet transform by using a lowpass/highpass filter pair and downsampling.
Building the Haar Matrix

Why the Word Wavelet?

- I opted to stay away from the classical approach to wavelets.
- It is beautiful theory, but too much for sophomores and juniors.
- I believe it’s better to give them a practical introduction to Fourier series and convolution, and then derive the discrete wavelet transform by using a lowpass/highpass filter pair and downsampling.
Building the Haar Matrix

Examples

Let’s have a look at the Mathematica notebook

HaarTransforms1D.nb

for a bit more on Haar Transforms.
Coding the Haar Transform

Implementing W_N

- The natural inclination when coding the DHWT is to simply write a loop and compute the lowpass portion and the highpass portion in the same loop.
- This bogs down in Mathematica and is also difficult to generalize when we consider longer filters.
- If we look at the lowpass portion of the transform, Hv, we can see a better way to code things.
Implementing W_N

Coding the Haar Transform

Implementing W_N

- The natural inclination when coding the DHWT is to simply write a loop and compute the lowpass portion and the highpass portion in the same loop.
- This bogs down in Mathematica and is also difficult to generalize when we consider longer filters.
- If we look at the lowpass portion of the transform, $H\nu$, we can see a better way to code things.
The natural inclination when coding the DHWT is to simply write a loop and compute the lowpass portion and the highpass portion in the same loop.

This bogs down in Mathematica and is also difficult to generalize when we consider longer filters.

If we look at the lowpass portion of the transform, Hv, we can see a better way to code things.
Coding the Haar Transform

Implementing \(W_N \)

- The natural inclination when coding the DHWT is to simply write a loop and compute the lowpass portion and the highpass portion in the same loop.
- This bogs down in Mathematica and is also difficult to generalize when we consider longer filters.
- If we look at the lowpass portion of the transform, \(Hv \), we can see a better way to code things.
Coding the Haar Transform

Implementing W_N

Consider Hv when $v \in \mathbb{R}^8$. We have

$$Hv = \frac{\sqrt{2}}{2} \begin{bmatrix} v_1 + v_2 \\ v_3 + v_4 \\ v_5 + v_6 \\ v_7 + v_8 \end{bmatrix}$$
Coding the Haar Transform

Implementing W_N

If we rewrite this, we have

$$Hv = \frac{\sqrt{2}}{2} \begin{bmatrix} v_1 + v_2 \\ v_3 + v_4 \\ v_5 + v_6 \\ v_7 + v_8 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 \\ v_3 & v_4 \\ v_5 & v_6 \\ v_7 & v_8 \end{bmatrix} \cdot \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} = Vh$$
Coding the Haar Transform

Implementing W_N

In a similar way we see that

$$Gv = Vg$$

So all we need to do to compute $W_n v$ is to create V, multiply it with h and g, and join to the two blocks together!
Coding the Haar Transform

Implementing W_N

Here is some Mathematica code to do it:

```
DHWT[v_] := Module[{V, lp, hp, y},
   V = Partition[v, 2, 2];
   lp = V.{1, 1};
   hp = V.{1, -1};
   y = Join[lp, hp];
   Return[Sqrt[2]*y/2];
];
```
Coding the Haar Transform

Implementing W_N^T

- Writing the code for the inverse transform is a bit trickier.
- Now the computation is

$$W_N^T v = \begin{bmatrix} H^T & G^T \end{bmatrix} v$$

- Let’s again look at a vector $v \in \mathbb{R}^8$ and consider the product $W_8^T v$:
Coding the Haar Transform

Implementing W_N^T

- Writing the code for the inverse transform is a bit trickier.

- Now the computation is

$$W_N^T v = \left[H^T \bigg| G^T \right] v$$

- Let’s again look at a vector $v \in \mathbb{R}^8$ and consider the product $W_8^T v$:
Coding the Haar Transform

Implementing W_N^T

- Writing the code for the inverse transform is a bit trickier.
- Now the computation is

$$W_N^T v = \begin{bmatrix} H^T & G^T \end{bmatrix} v$$

- Let's again look at a vector $v \in \mathbb{R}^8$ and consider the product $W_8^T v$:
Implementing W_N^T

Coding the Haar Transform

Implementing W_N^T

- Writing the code for the inverse transform is a bit trickier.
- Now the computation is

$$W_N^T v = \begin{bmatrix} H^T & G^T \end{bmatrix} v$$

- Let’s again look at a vector $v \in \mathbb{R}^8$ and consider the product $W_8^T v$:
Coding the Haar Transform

Implementing W_N^T

$W_8^T v = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \\ v_7 \\ v_8 \end{bmatrix}$
Coding the Haar Transform

Implementing W_N^T

$$W_8^T v = \frac{\sqrt{2}}{2} \begin{bmatrix} v_1 - v_5 \\ v_1 + v_5 \\ v_2 - v_6 \\ v_2 + v_6 \\ v_3 - v_7 \\ v_3 + v_7 \\ v_4 - v_8 \\ v_4 + v_8 \end{bmatrix}$$
Coding the Haar Transform

Implementing W_N^T

- The matrix V takes a bit different shape this time.
- Now V is

$$V = \begin{bmatrix} v_1 & v_5 \\ v_2 & v_6 \\ v_3 & v_7 \\ v_4 & v_8 \end{bmatrix}$$

- We need to dot V with both h and g but then intertwine the results.
Coding the Haar Transform

Implementing W_N^T

▶ The matrix V takes a bit different shape this time.

▶ Now V is

$$V = \begin{bmatrix} v_1 & v_5 \\ v_2 & v_6 \\ v_3 & v_7 \\ v_4 & v_8 \end{bmatrix}$$

▶ We need to dot V with both h and g but then intertwine the results.
Implementing W_N^T

Coding the Haar Transform

Implementing W_N^T

- The matrix V takes a bit different shape this time.
- Now V is

$$V = \begin{bmatrix}
V_1 & V_5 \\
V_2 & V_6 \\
V_3 & V_7 \\
V_4 & V_8
\end{bmatrix}$$

- We need to dot V with both h and g but then intertwine the results.
Coding the Haar Transform

Implementing W_N^T

- The matrix V takes a bit different shape this time.
- Now V is

$$V = \begin{bmatrix}
 v_1 & v_5 \\
 v_2 & v_6 \\
 v_3 & v_7 \\
 v_4 & v_8 \\
\end{bmatrix}$$

- We need to dot V with both h and g but then intertwine the results.
Coding the Haar Transform

Implementing W_N^T

Let's return to the Mathematica notebook HaarTransforms1D.nb to see how to code the inverse.
Let’s now assume A is an $N \times N$ image with N even.

How do we transform A?

If we compute $W_N A$, we are simply applying the DHWT to each column of A:
2D Haar Transform

Building the 2D Transform

▶ Let’s now assume \(A \) is an \(N \times N \) image with \(N \) even.

▶ How do we transform \(A \)?

▶ If we compute \(W_N A \), we are simply applying the DHWT to each column of \(A \):
Let’s now assume A is an $N \times N$ image with N even.

How do we transform A?

If we compute $W_N A$, we are simply applying the DHWT to each column of A:

Let’s now assume A is an $N \times N$ image with N even.

How do we transform A?

If we compute $W_N A$, we are simply applying the DHWT to each column of A:
2D Haar Transform

Building the 2D Transform
2D Haar Transform

We’ve processed the columns of A - what should we do to process the rows of A as well?

Answer: Compute $W_N A W_N^T$.
We’ve processed the columns of A - what should we do to process the rows of A as well?

Answer: Compute $W_N A W_N^T$.

"University of St. Thomas"
We’ve processed the columns of A - what should we do to process the rows of A as well?

Answer: Compute $W_NAW_N^T$.

2D Haar Transform

Building the 2D Transform
2D Haar Transform

Building the 2D Transform

\[W_N A W_N^T \]

A
2D Haar Transform

Building the 2D Transform

If we look at $W_N A W_N^T$ in block format, we can get a better idea what’s going on.

\[W_N A W_N^T = \begin{bmatrix} H & \frac{H}{G} \end{bmatrix} A \begin{bmatrix} H & \frac{H}{G} \end{bmatrix}^T = \begin{bmatrix} \frac{HA}{GA} \end{bmatrix} \begin{bmatrix} H^T & G^T \end{bmatrix} \]

\[= \begin{bmatrix} HAH^T & HAG^T \\ GAH^T & GAG^T \end{bmatrix} \]

\[= \begin{bmatrix} B & V \\ H & D \end{bmatrix} \]
2D Haar Transform

Building the 2D Transform

► If we look at $W_N A W_N^T$ in block format, we can get a better idea what’s going on.

$$W_N A W_N^T = \begin{bmatrix} H \\ G \end{bmatrix} A \begin{bmatrix} H \\ G \end{bmatrix}^T = \begin{bmatrix} HA \\ GA \end{bmatrix} \begin{bmatrix} H^T \\ G^T \end{bmatrix}$$

$$= \begin{bmatrix} HAH^T & HAG^T \\ GAH^T & GAG^T \end{bmatrix}$$

$$= \begin{bmatrix} B & V \\ H & D \end{bmatrix}$$
2D Haar Transform

If we look at $W_NAW_N^T$ in block format, we can get a better idea what's going on.

$$W_NAW_N^T = \begin{bmatrix} H & G \\ G & H \end{bmatrix} \begin{bmatrix} H & G \\ G & H \end{bmatrix}^T = \begin{bmatrix} HA & GA \\ GA & HA \end{bmatrix} \begin{bmatrix} H^T & G^T \end{bmatrix}$$

$$= \begin{bmatrix} HAH^T & HAG^T \\ GAH^T & GAG^T \end{bmatrix}$$

$$= \begin{bmatrix} B & V \\ H & D \end{bmatrix}$$
2D Haar Transform

Building the 2D Transform

- HAH^T averages along the columns of A and then along the rows of HA. This will produce an approximation (or blur) B of A.

- HAG^T averages along the columns of A and then differences along the rows of HA. This will produce vertical differences ν between B and A.

Wednesday, 7 June, 2006

Lecture 4

Discrete Haar Wavelet Transforms
2D Haar Transform

Building the 2D Transform

- $H A H^T$ averages along the columns of A and then along the rows of HA. This will produce an approximation (or blur) B of A.

- $H A G^T$ averages along the columns of A and then differences along the rows of HA. This will produce vertical differences ∇ between B and A.
2D Haar Transform

Building the 2D Transform

- AHA^T averages along the columns of A and then along the rows of HA. This will produce an approximation (or blur) B of A.

- AHG^T averages along the columns of A and then differences along the rows of HA. This will produce vertical differences ν between B and A.
2D Haar Transform

Building the 2D Transform

- GAH^T differences along the columns of A and then averages along the rows of GA. This will produce horizontal differences \mathcal{H} between B and A.

- GAG^T differences along the columns of A and then differences along the rows of GA. This will produce diagonal differences \mathcal{V} between B and A.
2D Haar Transform

Building the 2D Transform

- \(GAH^T \) differences along the columns of \(A \) and then averages along the rows of \(GA \). This will produce horizontal differences \(\mathcal{H} \) between \(B \) and \(A \).

- \(GAG^T \) differences along the columns of \(A \) and then differences along the rows of \(GA \). This will produce diagonal differences \(\mathcal{V} \) between \(B \) and \(A \).
2D Haar Transform

Building the 2D Transform

- $G A H^T$ differences along the columns of A and then averages along the rows of $G A$. This will produce horizontal differences \mathcal{H} between B and A.

- $G A G^T$ differences along the columns of A and then differences along the rows of $G A$. This will produce diagonal differences \mathcal{V} between B and A.

Discrete Haar Wavelet Transforms

Wednesday, 7 June, 2006
Lecture 4
2D Haar Transform

Building the 2D Transform

To better understand these block forms, let’s look at the Mathematica notebook

HaarTransforms2D.nb
Coding the 2D Haar transform is easy - we already have a routine that will apply the DHWT to each column of A, so we can easily write a routine to compute $C = W_N A$. Let’s call this routine W.

Our goal is to compute $B = W_N A W_N^T = CW_N^T$.

It turns out that writing code for CW_N^T is a bit tedious, but if we use some linear algebra . . .
Coding the 2D Haar transform is easy - we already have a routine that will apply the DHWT to each column of \(A \), so we can easily write a routine to compute \(C = W_N A \). Let’s call this routine \(\tilde{w} \).

Our goal is to compute \(B = W_N A W_N^T = CW_N^T \).

It turns out that writing code for \(CW_N^T \) is a bit tedious, but if we use some linear algebra . . .
Coding the 2D Haar Transform

Coding the 2D Transform

▶ Coding the 2D Haar transform is easy - we already have a routine that will apply the DHWT to each column of A,

▶ so we can easily write a routine to compute $C = W_N A$.

Let’s call this routine \bar{w}.

▶ Our goal is to compute $B = W_N A W_N^T = CW_N^T$.

▶ It turns out that writing code for CW_N^T is a bit tedious, but if we use some linear algebra . . .
Coding the 2D Haar Transform

Coding the 2D Transform

-Coding the 2D Haar transform is easy - we already have a routine that will apply the DHWT to each column of A,

-so we can easily write a routine to compute $C = W_N A$. Let's call this routine \tilde{w}.

-Our goal is to compute $B = W_N A W_N^T = CW_N^T$.

-It turns out that writing code for CW_N^T is a bit tedious, but if we use some linear algebra...
Coding the 2D Haar Transform

Coding the 2D Transform

Coding the 2D Haar Transform is easy - we already have a routine that will apply the DHWT to each column of A,

so we can easily write a routine to compute $C = W_N A$. Let’s call this routine \overline{w}.

Our goal is to compute $B = W_N A W_N^T = C W_N^T$.

It turns out that writing code for $C W_N^T$ is a bit tedious, but if we use some linear algebra...
2D Haar Transform

Coding the 2D Transform

- If we transpose both sides of $B = CW_N^T$, we have

 $$B^T = W_N C^T$$

- So we can simply apply W to C^T and transpose the result.

- One student wasn’t so sure about this …

- Let’s return to HaarTransforms2D.nb to write some code for the 2D Haar Wavelet Transform.
2D Haar Transform
Coding the 2D Transform

If we transpose both sides of $B = CW_N^T$, we have

$$B^T = W_N C^T$$

So we can simply apply W to C^T and transpose the result.

One student wasn’t so sure about this . . .

Let’s return to HaarTransforms2D.nb to write some code for the 2D Haar Wavelet Transform.
If we transpose both sides of $B = C W_N^T$, we have

$$B^T = W_N C^T$$

So we can simply apply W to C^T and transpose the result.

One student wasn’t so sure about this . . .

Let’s return to HaarTransforms2D.nb to write some code for the 2D Haar Wavelet Transform.
If we transpose both sides of $B = CW_N^T$, we have

$$B^T = W_N C^T$$

So we can simply apply W to C^T and transpose the result.

One student wasn’t so sure about this . . .

Let’s return to HaarTransforms2D.nb to write some code for the 2D Haar Wavelet Transform.
2D Haar Transform
Coding the 2D Transform

- If we transpose both sides of $B = CW_N^T$, we have

$$B^T = W_N C^T$$

- So we can simply apply w to C^T and transpose the result.
- One student wasn’t so sure about this . . .
- Let’s return to HaarTransforms2D.nb to write some code for the 2D Haar Wavelet Transform.
2D Haar Transform

Iterating

- It’s time to explain the `NumIterations` directive you have seen in the Mathematica notebooks.
- We can motivate the idea by looking at the cumulative energy of an image A and its wavelet transform.
2D Haar Transform

Iterating

▶ It’s time to explain the `NumIterations` directive you have seen in the Mathematica notebooks.

▶ We can motivate the idea by looking at the cumulative energy of an image A and its wavelet transform.
2D Haar Transform

It's time to explain the `NumIterations` directive you have seen in the Mathematica notebooks.

We can motivate the idea by looking at the cumulative energy of an image A and its wavelet transform.
2D Haar Transform

Here is a 200 \times 200 image and it’s transform:
2D Haar Transform

Here are the cumulative energies for both A (red) and its transform (brown):
2D Haar Transform

Iterating

To give you an idea, the largest 10000 elements in A make up about 36.5% of the energy in A while the first 10000 elements in the transform comprise about 99.5% of the energy in the transform.

The wavelet transform is totally invertible, so if we were to Huffman encode the transform, the bit stream should be markedly smaller.
To give you an idea, the largest 10000 elements in A make up about 36.5% of the energy in A while the first 10000 elements in the transform comprise about 99.5% of the energy in the transform.

The wavelet transform is totally invertible, so if we were to Huffman encode the transform, the bit stream should be markedly smaller.
2D Haar Transform

To give you an idea, the largest 10000 elements in A make up about 36.5% of the energy in A while the first 10000 elements in the transform comprise about 99.5% of the energy in the transform.

The wavelet transform is totally invertible, so if we were to Huffman encode the transform, the bit stream should be markedly smaller.
2D Haar Transform

Iterating

- We can get even more concentration of the energy if we iterate the wavelet transform. That is, after computing the wavelet transform of A, we extract the blur and compute a wavelet transform of it.

- We could repeat this process p times if the dimensions of A are divisible by 2^p.

Wednesday, 7 June, 2006

Lecture 4

Discrete Haar Wavelet Transforms
2D Haar Transform

Iterating

- We can get even more concentration of the energy if we iterate the wavelet transform. That is, after computing the wavelet transform of A, we extract the blur and compute a wavelet transform of it.

- We could repeat this process p times if the dimensions of A are divisible by 2^p.
We can get even more concentration of the energy if we iterate the wavelet transform. That is, after computing the wavelet transform of A, we extract the blur and compute a wavelet transform of it.

We could repeat this process p times if the dimensions of A are divisible by 2^p.
2D Haar Transform

Iterating

Now suppose we iterate 2 times:
2D Haar Transform

Iterating

or 3 times:
2D Haar Transform

Here are the cumulative energy vectors for 1 iteration (brown), 2 iterations (blue), and 3 iterations (gray):
The students really enjoy the material in this chapter. It is quite straightforward and ties together everything new we’ve done to date.

I have them look at the entropy of particular vectors when processed by the Haar transform. This gives them some idea of the potential for wavelet-based compression.
The students really enjoy the material in this chapter. It is quite straightforward and ties together everything new we’ve done to date.

I have them look at the entropy of particular vectors when processed by the Haar transform. This gives them some idea of the potential for wavelet-based compression.
In the Classroom

Teaching Ideas

- The students really enjoy the material in this chapter. It is quite straightforward and ties together everything new we’ve done to date.

- I have them look at the entropy of particular vectors when processed by the Haar transform. This gives them some idea of the potential for wavelet-based compression.
In the Classroom

Computer Usage

- As you might imagine, we do lots of coding in this chapter.
- I let the students work in pairs and they write code for the Haar transform and its inverse (1D and 2D) as well as iterated versions.
- They can get pretty frustrated with Mathematica at this point - it is good to show them some simple debugging techniques.
In the Classroom

Computer Usage

- As you might imagine, we do lots of coding in this chapter.
- I let the students work in pairs and they write code for the Haar transform and its inverse (1D and 2D) as well as iterated versions.
- They can get pretty frustrated with Mathematica at this point - it is good to show them some simple debugging techniques.
In the Classroom

As you might imagine, we do lots of coding in this chapter. I let the students work in pairs and they write code for the Haar transform and its inverse (1D and 2D) as well as iterated versions. They can get pretty frustrated with Mathematica at this point - it is good to show them some simple debugging techniques.
As you might imagine, we do lots of coding in this chapter.

I let the students work in pairs and they write code for the Haar transform and its inverse (1D and 2D) as well as iterated versions.

They can get pretty frustrated with Mathematica at this point - it is good to show them some simple debugging techniques.
In the Classroom

Computer Usage

- I let them use their own images/audio files (sometimes dangerous).
- To test their iterated 1D inverse, they must download an audio clip from my website that has been transformed p times, guess at p, and then apply their inverse to guess the movie clip.
In the Classroom

Computer Usage

- I let them use their own images/audio files (sometimes dangerous).
- To test their iterated 1D inverse, they must download an audio clip from my website that has been transformed p times, guess at p, and then apply their inverse to guess the movie clip.
In the Classroom

I let them use their own images/audio files (sometimes dangerous).

To test their iterated 1D inverse, they must download an audio clip from my website that has been transformed p times, guess at p, and then apply their inverse to guess the movie clip.
Today’s Schedule

9:00-10:15 **Lecture One:** Why Wavelets?
10:15-10:30 **Coffee Break (OSS 235)**
10:30-11:45 **Lecture Two:** Digital Images, Measures, and Huffman Codes
12:00-1:00 **Lunch (Cafeteria)**
1:30-2:45 **Lecture Three:** Fourier Series, Convolution and Filters
2:45-3:00 **Coffee Break (OSS 235)**
3:00-4:15 **Lecture Four:** 1D and 2D Haar Transforms
5:30-6:30 **Dinner (Cafeteria)**