Discrete Wavelet Transformations:
An Elementary Approach with Applications

Errata Sheet

March 6, 2009

Please report any errors you find in the text to Patrick J. Van Fleet at pjvanfleet@stthomas.edu.

The Errata Stakes

Here is a breakdown of who is winning the race to find the most errors in the text! I haven’t thought far enough ahead about awarding a prize, but something may be on the horizon – especially if I win!

<table>
<thead>
<tr>
<th>Name</th>
<th># Typos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caroline Haddad</td>
<td>26</td>
</tr>
<tr>
<td>Kristin Pfabe</td>
<td>137</td>
</tr>
<tr>
<td>William Ross</td>
<td>1</td>
</tr>
<tr>
<td>David Ruch</td>
<td>16</td>
</tr>
<tr>
<td>Quiang Shi</td>
<td>2</td>
</tr>
<tr>
<td>Patrick Van Fleet</td>
<td>22</td>
</tr>
<tr>
<td>Roger Zarnowski</td>
<td>5</td>
</tr>
</tbody>
</table>

Preface

1. Page xiv, change planned I to I planned. (Kristin Pfabe)
2. Page xx, First sentence: Change that to than. (Roger Zarnowski)

Chapter 1

1. Page 3, paragraph 2, line 2: \(\tilde{W}^3 \) should be \(\tilde{W}^T \). The 3 is a footnote marker. (Patrick Van Fleet)
Chapter 2

1. Page 20, Exercise 2.7: The \(\langle u, v \rangle \) should be replaced by \(u \cdot v \). And here is a real howler. The identity to prove should read:

\[
u \cdot v = \frac{1}{4} \|u + v\|^2 - \frac{1}{4} \|u - v\|^2
\]

(Caroline Haddad)

2. Page 21, Problem 2.10: In the definition of \(\|v\|_\infty \), delete \(1 \leq k \leq n \) under max. (Kristin Pfabe)

3. Page 23, Definition 2.5: Change Dimensions of a Matrix to Dimension of a Matrix. (Roger Zarnowski)

4. Page 38, paragraph 1: replace learned with we will learn to make tenses align. (David Ruch)

5. Page 39, First line: Change \(2 \times 1 \) to \(1 \times 2 \). (Roger Zarnowski)

6. Page 41, First line: Change dimensions to dimension. (Roger Zarnowski)

7. Page 46, Exercise 2.33: A’s should be M’s in the last inline formula. (Caroline Haddad)

Chapter 3

1. Page 76, The matrix \(W \) in Problem 3.17 is the white matrix \(W \) defined in Problem 3.14. (David Ruch).

2. Page 77, In Problem 3.19a, replace \(u \) and \(v \) with \(i \) and \(q \), respectively. (David Ruch)

3. Page 79, Definition of Entropy, line 3: The \(a_k \) should be \(a_i \). (Caroline Haddad)

4. Page 79, last line: the word the is missing before the word elements. (Caroline Haddad)

5. Page 81, Definition 3.2: Add \(v \neq 0 \) to the definition. (Kristin Pfabe)

6. Page 83, Definition 3.3, second line: Replace \(u \) and \(v \), by \(A \) and \(B \), respectively. (William Ross)

7. Page 84, Problem 3.22(a): Replace \(c \) any real number with \(c \neq 0 \) any real number. (Kristin Pfabe)

8. Page 84, Problem 3.23: Replace \(c \) any real number with \(c \neq 0 \) any real number. (Patrick Van Fleet)

9. Page 84, Problem 3.24: Part (i) should be Part (h). (Caroline Haddad)
10. Page 85, Problem 3.27: Replace \textit{bpp} with \textit{bits per character}. (Kristin Pfabe)

11. Page 85, Problem 3.27: \(n \geq 4 \). (Qiang Shi)

12. Page 86, Problem 3.29(b): Show that the inequality holds for \(0 < t \leq 1 \) with equality at \(t = 1 \). (Caroline Haddad and Qiang Shi)

13. Page 92, next to last paragraph, line 5: replace \textit{bit bit} with \textit{bit}. (Caroline Haddad)

\textbf{Chapter 4}

1. Page 100, Line above \textbf{Conjugates}: Change \(11 + i \) to \(11 + 7i \). (Kristin Pfabe)

2. Page 114, paragraph before Example 4.5, next to last line: \textit{id} should be \textit{is}. (Caroline Haddad)

3. Page 116, equation (4.15): \textit{kodd} should be \textit{k odd}. (Patrick Van Fleet)

4. Page 122, Problem 4.26(c): No negative sign in front of the \(2i \). (Caroline Haddad)

5. Page 123, Problem 4.34(b): Replace \(d_k = \overline{c_k} \) with \(d_k = c_k \). (Kristin Pfabe)

6. Page 123, Problem 4.31: plot \(f_n \) for \(n = 1, 2, 5, 10, 50 \). (Caroline Haddad)

7. Page 124, Problem 4.37(b): The integrand for the second integral should be \(e^{2\pi ij\omega/2L} e^{-2\pi ik\omega/2L} \) instead of \(e^{2\pi ik\omega/2L} e^{-2\pi ik\omega/2L} \) (Caroline Haddad)

8. Page 125, Problem 4.37: an \(\omega \) is missing in the complex exponential in the integrand used to define \(c_k \). (Kristin Pfabe)

\textbf{Chapter 5}

1. Page 128, first line in Section 5.1: \textit{OVector} should be replaced with \textit{Vector}. (Caroline Haddad)

2. Page 132, last line: The output for \textbf{y} should be

\[
\textbf{y} = (\ldots, 0, 0, 18, 15, 14, 44, 13, 13, 15, 0, 0, 0, \ldots)
\]

That is, the 8 in the vector should be 13. (David Ruch)

3. Page 137, Exercise 5.13: Delete the sentence “Show that \(\textbf{h} \ast \textbf{x}_m = \textbf{y}_m \).” (Patrick Van Fleet)
4. Page 139, first displayed equation below Definition 5.2: Some subscripts are wrong. The equation should read:

\[y_n = \cdots = h_0 x_n + h_1 x_{n-1} + h_2 x_{n-2} + h_3 x_{n-3} + \cdots \]

(Caroline Haddad)

5. Page 142, first line after subsection Lowpass Filter Defined: Delete the of in the sentence. (Caroline Haddad)

6. Page 143, the two displayed equations above (5.9): remove the minus signs in the complex exponentials. (Kristin Pfabe)

7. Page 147, Problem 5.16: The definition of \(H(\omega) \) should not have a minus sign in the complex exponential but the definition of \(h_k \) should have a minus sign in the complex exponential. Also change \(dx \) to \(d\omega \). (Kristin Pfabe)

8. Page 148, Problem 5.19: The \(\frac{1}{2} \) should be replaced by \(\pm \frac{1}{2} \). (David Ruch)

9. Page 149, Problem 5.25: \(L \) is an odd positive integer. (Kristin Pfabe)

10. Page 149, Problem 5.27(a): Replace \((1 + \cos \omega) \) with \(\left(\frac{3}{2} + \cos \omega \right) \). (Kristin Pfabe)

11. Page 152, second sentence: Replace \(\tilde{h} \) with \(\tilde{y} \). (Caroline Haddad)

12. Page 154, second displayed equation: Left side should be \(\frac{1}{2 + e^{-\omega}} \). (David Ruch)

Chapter 6

1. Page 161, Equation (6.3): The subscripts on the \(y_s \) and \(z_s \) should be even - \(y_{-2}, y_0, y_2, y_4, \ldots \) and \(z_{-2}, z_0, z_2, z_4, \ldots \) to keep things consistent with the presentation. (David Ruch)

2. Page 163, last line: replace \(y \) with \(v \). (Kristin Pfabe)

3. Page 165, displayed matrix equation near page top: The values 101 and 60 in the vector should be interchanged. (Kristin Pfabe)

4. Page 170, matrix equation after line 5: The second \(\frac{\sqrt{2}}{2} \) (in front of the vector \(y \)) should not be there. (Kristin Pfabe)

5. Page 170, displayed equations, middle of page: These equations should be

\[\frac{\sqrt{2}}{2} (y_k + y_{k+N/2}) = v_{2k} \quad \text{and} \quad \frac{\sqrt{2}}{2} (y_k - y_{k+N/2}) = v_{2k-1} \]

(David Ruch and Kristin Pfabe)
6. Page 171, top two lines in Algorithm 6.2: These lines should be

\[v_{2k-1} = (y_k - y_{k+N/2}) \]
\[v_{2k} = (y_k + y_{k+N/2}) \]

(David Ruch and Kristin Pfabe)

7. Page 171, Exercise 6.2: Change sitefor to site for. (Kristin Pfabe)

8. Page 171, Exercise 6.5: Change \(g = (g_0, g_1) = (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) \) to \(g = (g_0, g_1) = (\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}) \). (Kristin Pfabe)

9. Page 173, first line of Section 6.2: \(\mathbb{R} \) should be \(\mathbb{R}^N \). (David Ruch)

10. Page 174, Last line of Example 6.3: \(WHT \) should be \(HWT \). (David Ruch)

11. Page 180, equations (6.21) and (6.22): \(2^i-1 \) should be \(2^i - 1 \) in both equations. (David Ruch)

12. Page 180, last vector on the page: This vector should be

\[
\begin{bmatrix}
 y^{2\ell} \\
 y^{2h} \\
 y^{1h}
\end{bmatrix}
\]

(David Ruch)

13. Page 186, Example 6.8, third line: \(W_{440}^T A \) should be \(AW_{440}^T \). (David Ruch)

14. Page 193, displayed equation: The matrix on the right hand side should not be multiplied by 2. (Caroline Haddad)

15. Page 193, 2 lines below displayed equation: The \(C_1 \) should be \(A \). (Caroline Haddad)

16. Page 196, For loop at top of page: Replace \(k \leq i \) with \(k < i \). (Patrick Van Fleet)

17. Page 204, the bitstream length of 98,304 should be \(8 \times 98,304 = 786,432 \). (Caroline Haddad)

18. Page 215, first line: Replace \(W_{384} \) with \(W_{512} \). (Kristin Pfabe)

19. Page 215, first line after Table 6.7: Change the second \(V \) to \(D \). (Caroline Haddad)

20. Page 217, Problem 6.26(a), last line: Replace \(k + N/2 \) by \(k \) as the subscript for \(d \). (Patrick Van Fleet)
21. Page 220, second paragraph, second line: eliminate the word *does*. (Caroline Haddad)

22. Page 220, Problem 6.31(d): Change the first \mathcal{H} to \mathcal{B}. (Caroline Haddad)

23. Page 220, Problem 6.31(e): Change *three* to *any*. (Patrick Van Fleet)

Chapter 7

1. Page 223, second paragraph: The vector \mathbf{v} should be $\mathbf{v} = [100, 102, 200, 202]^T$ and $\tilde{\mathbf{v}}$ should be $\tilde{\mathbf{v}} = [-1, 1, -1, 1]^T$. (Kristin Pfabe)

2. Page 223, next to last line: A space is needed between *be* and $\tilde{\mathbf{y}}$. (Roger Zarnowski)

3. Page 224, Third line in Section 7.1: W^T should be W_X^T. (Kristin Pfabe)

4. Page 229, Equation (7.17): $h_0 - h_1 - ch_1 + ch_0 = 0$ should be $h_0 - h_1 - ch_1 - ch_0 = 0$. (Kristin Pfabe)

5. Page 231, first paragraph, next to last line: after *approach*, insert *0* at. (Caroline Haddad)

6. Page 232, first line: Replace *Now if use* with *Now if we use*. (Kristin Pfabe)

7. Page 232, first indented equation after (7.25): The $3 + \sqrt{3}$ should be $3 - \sqrt{3}$. (Kristin Pfabe)

8. Page 233, sentence below (7.31): change (7.17) to (7.15) (Kristin Pfabe)

9. Page 234, second boxed equations: g_0 should be $g_0 = h_3 = \frac{1}{4\sqrt{2}}(1 - \sqrt{3})$ and g_1 should be $g_1 = -h_2 = -\frac{1}{4\sqrt{2}}(3 - \sqrt{3})$. (Kristin Pfabe)

10. Page 236, first indented equation below (7.38): Replace $e^{5i\omega}$ with $e^{ik\omega}$. (Kristin Pfabe)

11. Page 241, first sentence of last paragraph: change *slight* to *slightly*. (Kristin Pfabe)

12. Page 248, Problem 7.13: the identities in parts (a) and (c) are missing negative signs on the right hand sides. They should be $G(\omega) = -e^{-3i\omega}H(\omega + \pi)$ and $G(\omega) = -e^{-3i\omega}H(\omega + \pi)$, respectively. (Kristin Pfabe)

13. Page 257, first displayed equation: Replace ($-i$) by i. (Kristin Pfabe)

14. Page 258, last paragraph: Change (7.63), (7.69), (7.80), (7.71), and (7.75) to (7.76)–(7.80). (Kristin Pfabe)

15. Page 260, Table 7.4: Change last two entries from 6 to 8. (Kristin Pfabe)
16. Page 261, first displayed equation of $Q(z)$: The right hand side should be multiplied by $\frac{1-\sqrt{3}}{4\sqrt{2}}$. The right hand side of the second displayed equation of $Q(z)$ should be multiplied by $\frac{1+\sqrt{3}}{4\sqrt{2}}$. (Patrick Van Fleet)

17. Page 263, Problem 7.21(c): Insert $j+k$ between the and odd and also between the and even. (Kristin Pfabe)

18. Page 264, Problem 7.24: The identity to prove is missing a negative sign on the right hand side. It should read: show $G(\omega) = -e^{i\omega L}H(\omega + \pi)$. (Kristin Pfabe)

19. Page 266, Matrices H_6 and H_8 need to have the horizontal divider moved up 1 and 2 rows, respectively. (Kristin Pfabe)

20. Page 268, Top matrix product: The first element of the column vector is v_1 not ℓv_1. (Kristin Pfabe)

21. Page 272, Second paragraph, last line: $y_{N/2}$ should be $y_{N/2}$. (Kristin Pfabe)

22. Page 273, First paragraph, second line: Replace 2, 4, and 6 by 2, 3, and 4. (Kristin Pfabe)

23. Page 274, second line: Change nonwrapping row k to kth nonwrapping block. (Kristin Pfabe)

24. Page 274, Equations (7.99) and (7.100): The upper limits on the summations should be $\frac{L+1}{2} + k - 1$ instead of $L+1/2 + k$. (Kristin Pfabe)

25. Page 274, Table 7.7, second row, second column: Change h to o in summand. (Kristin Pfabe)

26. Page 275, Line 5: Insert the before general. (Kristin Pfabe)

27. Page 275, Equation (7.102): The subscript of o should be j instead of $\frac{L+1}{2} - k + j$. (Kristin Pfabe)

28. Page 275, Equations (7.103) and (7.104): The second summations in each equation should have subscript j for o and e, respectively. (Kristin Pfabe)

29. Page 276, Algorithm 7.2 description: The second entry in o should be f_3 instead of f_2. (Kristin Pfabe)

30. Page 276, Algorithm 7.2, last loop: The upper limit should be $r + k - 1$ instead of $r - k$. (Kristin Pfabe)

31. Page 276, Last line: Replace v_{L+2x-1} with v_{L+2k-1}. (Kristin Pfabe)

32. Page 277, Second to last loop: Swap the o and e. (Kristin Pfabe)
33. Page 277, Last loop: The index on o and e should be j instead of $r - k + j$. (Kristin Pfabe)

Chapter 8

1. Page 281, second paragraph, second line: insert obtained between were and simply. (Caroline Haddad)

2. Page 281, third paragraph, second sentence: delete the word that. (Kristin Pfabe)

3. Page 286, paragraph under Definition 8.2, third sentence: change ways to way. (Kristin Pfabe)

4. Page 290, rows in the middle of the page: Remove all terms that have a subscript 4 and delete the last row. (Kristin Pfabe)

5. Page 293, equation (8.22) - the right hand side is missing a negative sign. It should be $G(\omega) = -e^{i\omega}H(\omega + \pi)$. (Kristin Pfabe)

6. Page 294, sentence above equation (8.25): change the to to on. (Kristin Pfabe)

7. Page 294, equation leading to (8.26): The second term in the right hand sides of the second and third lines should have $e^{in(\omega + \pi) + b}$ instead of $e^{n\omega + b}$. (Kristin Pfabe)

8. Page 297, third indented equation: This should be $G(\omega) = -\sqrt{2}i e^{\frac{i\omega}{2}} \sin\left(\frac{\omega}{2}\right)$. (Caroline Haddad)

9. Page 301, text below equation (8.41): Q_k should be Q_K. (Kristin Pfabe)

10. Page 302, equation after (8.46): The denominator should be $2^K e^{iK\omega}$. (Kristin Pfabe)

11. Page 306, equation (8.57): $e^{-i\omega}$ should be $e^{-i\omega}$. (Kristin Pfabe)

12. Page 308, equation (8.59) - upper sum limits should be 7 not 11. (Patrick Van Fleet)

13. Page 309, fourth paragraph: The paragraph starts with In the case $K = 2$. Change the three $\frac{5}{2}$'s to $\frac{3}{2}$'s. (Kristin Pfabe)

14. Page 309, last equation: The right hand side is missing a negative sign. It should be $G(\omega) = -e^{i(2K-1)\omega}H(\omega + \pi)$. (Kristin Pfabe)

15. Page 314, Problem 8.14: Change to Use Lemma 8.1 to verify (8.47). (Kristin Pfabe)

16. Page 314, Problem 8.17: In part (b), change $e^{-i\omega}$ to $e^{i\omega}$. In part (d), change use part (b) to use part (c). (Kristin Pfabe)

8
Chapter 9

1. Page 319, Paragraph above Figure 9.1: Delete the last sentence For this example, we use $\sigma = 18$. (Kristin Pfabe)

2. Page 325, last sentence: Change Theorem A.7 to Proposition A.7. (Kristin Pfabe)

3. Page 329, fourth line: after very sparse!, insert the phrase the highpass portion of. (Kristin Pfabe)

4. Page 331, fourth line: change at to as. (Kristin Pfabe)

5. Page 331, sentence before Figure 9.8: Change is to are. (Kristin Pfabe)

6. Page 331, sentence after Figure 9.8: Insert inverse before wavelet transformation. (Kristin Pfabe)

7. Page 334, Problem 9.9(d): j, k run from 1 to N, not 1 to 300. (Kristin Pfabe)

8. Page 339, fourth line: change depend to depends. (Kristin Pfabe)

Chapter 10

1. Page 351, fourth line from bottom: Change $H'(\pi) = 0$ to $H(\pi) = 0$. (David Ruch)

2. Page 352, third paragraph from bottom, last sentence: Delete the before analyze. (Kristin Pfabe)

3. Page 355, formula for c: Change \tilde{h}_{-1} to \tilde{h}_1. (Kristin Pfabe)

4. Page 355, third equation in (10.3): Change \tilde{h}_{-1} to \tilde{h}_1. (Kristin Pfabe)

5. Page 356, Theorem 10.1: Delete the and in front of whose. (Kristin Pfabe)

6. Page 359, equation above (10.29): Change $\tilde{H}(\omega)$ to $\tilde{H}(\omega)$. (Kristin Pfabe)

7. Page 360, Corollary 10.1, change Then to then. (Kristin Pfabe)

8. Page 363, \tilde{W}_8 matrices: The seventh and eighth rows in each matrix should be shifted cyclically one more unit to the right. (Kristin Pfabe)

9. Page 366, Last line of Proposition 10.3: Change the second odd to even. (Kristin Pfabe)

10. Page 367, Corollary 10.2, last sentence: delete the comma and replace then $p \ldots$ and with and we define $p \ldots$, then. (Kristin Pfabe)
11. Page 367, equation (10.36): h_0 and h_1 throughout the identity should be replaced with \tilde{h}_0 and \tilde{h}_1, respectively. (Kristin Pfabe)

12. Page 370, Problem 10.13: Part (c): Change $n = -1$ to $n = 1$ and $b = 0$ to $b = \pi$. (David Ruch)

13. Page 370, Problem 10.13: Part (e) should refer to Corollary 10.1 instead of 10.2. Part (f) - change For to Find.

14. Page 373, paragraph that starts with Unfortunately: Change $e^{i\omega /2}$ to $e^{i\omega /2}$. (Kristin Pfabe)

15. Page 374, equation (10.42) - write $N/2$ as a fraction. (Patrick Van Fleet)

16. Page 375, The splines used should not be centered. B_0 should be defined as the characteristic function on $[0, 1)$ and (10.45) should be an integral over the interval $[0, 1)$ as well. The triangle function $B_1(t)$ should be replaced with $B_1(t - 1)$ and the figures in Figure 10.1 should be translated $\frac{1}{2}$ and 1 unit right, respectively. (Patrick Van Fleet)

17. Page 376: Paragraph above (10.50): Two occurrences of $(1, \frac{1}{2}, 1)$ should be changed to $(\frac{1}{2}, 1, \frac{1}{2})$. (Caroline Haddad)

18. Page 376: The dilation equation (10.48) should read

$$B_0(t) = 1 \cdot B_0(2t) + 1 \cdot B_0(2t - 1)$$

(Kristin Pfabe)

19. Page 376: The dilation equation (10.49) should read

$$B_1(t) = \frac{1}{2} B_1(2t) + 1 \cdot B_1(2t - 1) + \frac{1}{2} B_1(2t - 2)$$

and the functions in Figure 10.2 should be moved so that they are supported in the interval $[0, 2]$. Equation (10.50) should read

$$B_{\tilde{N}}(t) = \sum_{k=0}^{\tilde{N}+1} 2^{\tilde{N}} \binom{\tilde{N} + 1}{k} B_{\tilde{N}}(2t - k)$$

(Patrick Van Fleet)

20. Page 377, equation (10.52): all h_k need tildes. (Kristin Pfabe)

21. Page 380, two lines above \tilde{W}_{10}: delete make to. (Kristin Pfabe)

22. Page 381, second matrix: Change all $\frac{3\sqrt{2}}{8}$ to $\frac{3\sqrt{2}}{4}$. (Kristin Pfabe)
23. Page 396, Example 10.11, second display equation for $H(\omega)$: Change $-\frac{3\sqrt{2}}{8}(2\cos^2(\omega) - 1)$ to $-\frac{3\sqrt{2}}{8}(2\cos^2(\omega) - 1)$. (Kristin Pfabe)

24. Page 398, Equation (10.70): The middle term in the identity is missing a factor of $\overline{H(\omega)}$. (Caroline Haddad)

25. Page 398, Equation (10.71): The middle term in the identity is missing a factor of $\overline{H(\omega + \pi)}$. (Caroline Haddad)

26. Page 399, second paragraph: replace even functions by 2π-periodic functions. (Kristin Pfabe)

27. Page 399, footnote, last line: a space is needed between of and h. (Kristin Pfabe)

28. Page 400, last displayed equation for $P(t)$ at the bottom of page: The top argument in the binomial coefficient should be $K - 1 + j$ instead of $K - j + 1$. (Kristin Pfabe)

29. Page 401, two lines above (10.76): Replace We now use (10.74) with $\tilde{\ell} = 2$ with We now use (10.73) and (10.74) with $\tilde{\ell} = \ell = 2$. (Kristin Pfabe)

30. Page 401, equation (10.77): The first occurrence of $-0.373391i$ should be 0.373391i. (Kristin Pfabe)

31. Page 401, last displayed equation: An $= \overline{H(0)}$. (Kristin Pfabe)

32. Page 404 Problem 10.39: Replace 10.39 by 10.38 and insert the word to before verify. (Caroline Haddad).

Chapter 11

1. Page 410, second expression for y_1: The last four terms on the right hand side should use v_1, v_2, v_3, and v_4 instead of v_0, v_1, v_2, and v_3, respectively. (Kristin Pfabe)

2. Page 412, first paragraph, last line: Change decrease to decreases. (Kristin Pfabe)

3. Page 413, displayed equations for $z_1, z_2, z_3, z_{N/2}$: The indices of the last components in the w vector should be $w_{2L+1}, w_{2L+3}, w_{2L+5}, w_{2L+2(N/2)−1}$, respectively. (Kristin Pfabe)

4. Page 414, displayed equations for $z_1, z_2, z_3, z_{N/2}$: The indices of the last components in the w vector should be $w_{2L}, w_{2L+2}, w_{2L+4}, w_{2L+2(N/2)−2}$, respectively. (Kristin Pfabe)

5. Page 415, Algorithm 11.1 - the first time w is defined, there is a mistake on the indices. It should be

$$w = \text{Join}[\text{Join}[(v_{N-(L-1)+1}, \ldots, v_N), v], (v_1, \ldots, v_{L-1})]$$

(Patrick Van Fleet)
6. Page 416, Problems 11.4 and 11.5: Change \(N = 24 \) and \(\tilde{G}_6 \) to \(\tilde{G}_{12} \). (David Ruch)

7. Page 420, Second matrix, first row: the second zero should be \(h_6 \). (Kristin Pfabe)

8. Page 421, first line: \(H_8 s \) should be \(H_8^T s \). (Kristin Pfabe)

9. Page 421, second line: Change odd to even. (Kristin Pfabe)

10. Page 421, paragraph above equation for \(q_{2k-1} \), third line: Change \(a \) to \(c \). (Kristin Pfabe)

11. Page 421, next to last paragraph, second line: omit \(and \ s_2 \). (Kristin Pfabe)

12. Page 426, line above (11.19): Change \(h^o \) to \(h^e \). (Kristin Pfabe)

13. Page 427, last line: Change \(h^e \) to \(h^o \). (Kristin Pfabe)

14. Page 428, Equation (11.21): Change \(h^o \) to \(h^e \). (Kristin Pfabe)

15. Page 428, third line after equation for \(g \): change \(h^e \) and \(h^o \) to \(g^e \) and \(g^o \). (Kristin Pfabe)

16. Page 429, Equation (11.25) should read \(p = \lfloor \frac{L}{2} \rfloor \) and \(a = \lfloor \frac{L-2}{2} \rfloor \). (Patrick Van Fleet)

17. Page 429, Equation (11.26) should read \(p = \lfloor \frac{L-1}{2} \rfloor \) and \(a = \lfloor \frac{L-1}{2} \rfloor \). (Patrick Van Fleet)

18. Page 429, Displayed equation for \(c \): Change two occurrences of \(t_N \) to \(t_{N/2} \). Also enclose vector components with \([\) instead of \((\) and add a transpose to the last \(] \). (Kristin Pfabe)

19. Page 431, top two lines: Change \(p = \lfloor \frac{L-2}{2} \rfloor \) and \(a = \lfloor \frac{L+1}{2} \rfloor \) to \(p = \lfloor \frac{L-1}{2} \rfloor \) and \(a = \lfloor \frac{L}{2} \rfloor \), respectively. (Kristin Pfabe)

20. Page 432, Definitions of \(\ell \) and \(m \): Change \(\ell = L \) to \(\ell = L - i \) and \(m = L + 1 \) to \(m = L + 1 - i \). (Kristin Pfabe)

21. Page 432, The first time \(p \) and \(a \) are defined (above the line defining \(c \)), they should be \(p = \lfloor \frac{L}{2} \rfloor \) and \(a = \lfloor \frac{L-2i}{2} \rfloor \). (Patrick Van Fleet)

22. Page 432, The second time \(p \) and \(a \) are defined (above the line defining \(d \)), they should be \(p = \lfloor \frac{L-1}{2} \rfloor \) and \(a = \lfloor \frac{L+1-2i}{2} \rfloor \). (Patrick Van Fleet)

23. Page 432, The last \texttt{For} statement at the bottom of the page - the upper limit should be \(\ell \) instead of \(m \). (Patrick Van Fleet)

24. Page 433, The \texttt{For} statement at the top of the page - the upper limit should be \(m \) instead of \(\ell \). (Patrick Van Fleet)
25. Page 434, Exercise 11.7 (d) and (e). Note that (11.25) and (11.26) defined in the text are incorrect - see previously noted corrections. (Patrick Van Fleet)

26. Page 437, three lines from bottom: Change $(-1)^k h_k$ to $(-1)^k h_{1-k}$. (Kristin Pfabe)

27. Page 438, second matrix: Change three occurrences of h_1 to g_2. (Kristin Pfabe)

28. Page 441, equation (11.36): Change all y’s to z’s. (Kristin Pfabe)

29. Page 442, last equation: left hand side should be a_{n+N-1}. (Kristin Pfabe)

30. Page 443, first equation: left hand side should be a_{n+N-1}. (Kristin Pfabe)

31. Page 443, sixth line: Change h to \tilde{h}. (Kristin Pfabe)

32. Page 444, Displayed equation for \tilde{h}: Insert two zeros after the first \ldots and two zeros before the second \ldots and add tildes to the subscripts $L-1$ so that they are $L-1$. (Kristin Pfabe)

33. Page 445, next to last line of Proposition 11.3: Change g_k to \tilde{g}_k. (Kristin Pfabe)

34. Page 445, 446, Add two zeros after the first \ldots and before the second \ldots in the definition of \tilde{g} in Propositions 11.3 and 11.4. (Kristin Pfabe)

35. Page 447, Displayed equation for v in Example 11.5: last element in last vector should end with $-h_0 v_8$ instead of $+h_0 v_8$. (Kristin Pfabe)

36. Page 447, Equation (11.44): The row 8, column 8 entry should be $-h_0$ instead of h_0. (Kristin Pfabe)

37. Page 447, Sixth line after (11.44): insert a between for and two-dimensional. (Kristin Pfabe)

38. Page 450, Line below the displayed equation for y: Replace $(-1)^k h_k$ with $(-1)^k h_{1-k}$. (Kristin Pfabe)

39. Page 451, paragraph after displayed formula for z: Change v_1, \ldots, v_4 to v_1, v_2, v_3. (Kristin Pfabe)

40. Page 451, Equation (11.48): Change the two occurrences of $h_{10} v_4$ to $h_{1} v_{10}$. (Kristin Pfabe)

41. Page 451, Equation (11.49): Rewrite $-h_1 v_2 + h_3 v_2$ to $(h_3 - h_1) v_2$ in row 1 and $h_1 v_2 - h_3 v_2$ to $(h_1 - h_3) v_2$ in row 12. (Kristin Pfabe)

42. Page 455, Problem 11.17 Hint: For consistency, rewrite $\langle \tilde{w}^k, \tilde{w}^j \rangle$ as $\tilde{w}^k \cdot \tilde{w}^j$. (Kristin Pfabe)
Chapter 12

1. Page 461, Definition of u_{jk}: When $j = 1$, $u_{jk} = \sqrt{2}/4$. (Kristin Pfabe)

2. Page 471, Paragraph preceding (12.6): Change $b = \pi$ to $b = 0$ and delete the phrase and using the fact that $e^{\pi i} = -1$. (Kristin Pfabe)

3. Page 471, Equation (12.6): Replace the $e^{\pi i}$ by (-1) in both \hat{g}_k and g_k. (Kristin Pfabe)

4. Page 472, Figure 12.7: Replace \mathcal{D}^1 with \mathcal{H}^1 in the upper right hand corner of the figure. (Kristin Pfabe)

5. Page 473, Equation (12.10): Change the second occurrence of d_{1V} to d_{1D}. (Kristin Pfabe)

6. Page 473, Equation (12.10): Change $\frac{1}{2}i$ to $\frac{1}{2}$. (Kristin Pfabe)

7. Page 473, Last two lines: Change second occurrence of d_{1V} and d_{2V} to d_{1D} and d_{2D}, respectively. (Kristin Pfabe)

8. Page 477, Displayed equations for o and e: Change four occurrences of parentheses to brackets. (Kirstin Pfabe)

10. Page 482, Example 12.4: Change $\frac{15}{2} + \frac{15}{2}$ to $8 + 8$ when computing s_1^*, $\frac{5}{2} + \frac{15}{2}$ to $3 + 8$ when computing s_2^*, and $6 + \frac{5}{2}$ to $6 + 3$ when computing s_3^*. (Kristin Pfabe)

11. Page 482, Equation (12.22): The argument of the floor function should be $\frac{1}{4}(d_k^* + d_{k-1}^*) + \frac{1}{2}$. (Kristin Pfabe)

12. Page 483, two lines below Equation (12.24): delete the word from. (Kristin Pfabe)

13. Page 486, second line in Sectio 12.4: Change first occurrence of lossless to lossy. (Kristin Pfabe)

14. Page 492, Figure 12.16 caption - should be upper left instead of bottom left. (Patrick Van Fleet)

Appendix A

1. Page 494, last equation: A $(0 - 2)^2$ is missing in the computation so that the variance is actually 128.4. (Kristin Pfabe)

2. Page 499, Second line in Section A.3: change that to i.e.,. (Kristin Pfabe)
3. Page 502, fifth line: Change assumes that a value is to assumes a value in. (Kristin Pfabe)

4. Page 504, first indented equation: power on $(4 - y)$ should be $\frac{3}{2}$ instead of $\frac{2}{3}$. (Kristin Pfabe)

5. Page 506, 5 lines above Example A.10: Change we’re to we. (Kristin Pfabe)

6. Page 509, Example A.11: First $\text{Var}(X)$ should be $\frac{1}{12}$ instead of $\frac{2}{3}$. (Kristin Pfabe)